Extraction of fuzzy logic rules from data by means of artificial neural networks
نویسنده
چکیده
The extraction of logical rules from data has been, for nearly fifteen years, a key application of artificial neural networks in data mining. Although Boolean rules have been extracted in the majority of cases, also methods for the extraction of fuzzy logic rules have been studied increasingly often. In the paper, those methods are discussed within a five-dimensional classification scheme for neural-networks based rule extraction, and it is pointed out that all of them share the feature of being based on some specialized neural network, constructed directly for the rule extraction task. As an important representative, a method for the extraction of rules in a general fuzzy disjunctive normal form is described in detail and illustrated on real-world applications. Finally, the paper proposes an algorithm demonstrating a principal possibility to extract fuzzy logic rules from multilayer perceptrons with continuous activation functions, i.e., from the kind of neural networks most universally used in applications. However, complexity analysis of the individual steps of that algorithm reveals that it involves computations with doubly-exponential complexity, due to which it can not without simplifications serve as a practically applicable alternative to methods based on specialized neural networks.
منابع مشابه
INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملComparing diagnosis of depression in depressed patients by EEG, based on two algorithms :Artificial Nerve Networks and Neuro-Fuzy Networks
Background and aims: Depression disorder is one of the most common diseases, but the diagnosis is widely complicated and controversial because of interventions, overlapping and confusing nature of the disease. So, keeping previous patients’ profile seems effective for diagnosis and treatment of present patients. Use of this memory is latent in synthetic neuro-fuzzy algorithm. P...
متن کاملFRULEX - Fuzzy Rules Extraction Using Rapid Back Propagation Neural Networks
In this paper, we present a new approach for extracting fuzzy rules from numerical inputoutput data for pattern classification. The approach combines the merits of the fuzzy logic theory, and neural networks. The proposed approach uses rapid back propagation neural network (RBPNN), which can handle both quantitative (numerical) and qualitative (linguistic) knowledge. The network can be regarde...
متن کاملModeling of streamflow- suspended sediment load relationship by adaptive neuro-fuzzy and artificial neural network approaches (Case study: Dalaki River, Iran)
Modeling of stream flow–suspended sediment relationship is one of the most studied topics in hydrology due to itsessential application to water resources management. Recently, artificial intelligence has gained much popularity owing toits application in calibrating the nonlinear relationships inherent in the stream flow–suspended sediment relationship. Thisstudy made us of adaptive neuro-fuzzy ...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Kybernetika
دوره 41 شماره
صفحات -
تاریخ انتشار 2005